Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Basic Rings Examples

65 views
# ************************************************************** # How to define basic rings in SAGE: Z/n, Z[i] ... # ************************************************************** # Working with congruences is called "Modular Arithmetic" Z/n # Define variables for this type of numbers: n=11 # define the modulue a=mod(2,n) # a is now 2 mod n a^4 # expect 16 mod 11, that is 5 # Copy an example from SAGE Quick Start - Number Theory: # http://doc.sagemath.org/html/en/prep/Quickstarts/Number-Theory.html a = mod(2,11); a; type(a); a^10; a^1000000 # ********************************************* # Number Fields: # Extensions of Q the field of rational numbers # ********************************************* # L1.<x> = NumberField(x^2 + x + 1); # defined by an irreducible polynomial L1 x x^2+x+1
5 2 <type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'> 1 1 Number Field in x with defining polynomial x^2 + x + 1 x 0
# # ********** Cyclotomic Fields ************* # # Cyclotomic fields are a special case of number fields: # - See https://en.wikipedia.org/wiki/Cyclotomic_field # - Important case: n=p is a prime # # Example p=3, x3-1=(x-1)(x^2+x+1), # Phi(3)=x^2+x+1 is the 3rd cyclotomic polynomial # see https://en.wikipedia.org/wiki/Cyclotomic_polynomial # It yields a quadratic extension: [L:Q]=2 L=CyclotomicField(3); L # special case of number field defined by x^p-1 z3=L.gen(); z3 z3^2+z3+1
Cyclotomic Field of order 3 and degree 2 zeta3 0
# Comparing the two presentations: a^2+a+1 z3^2+z3+1 if z3==a: print "z3=a both are zeta3" else: print "different implementations ..."
0 0 different implementations ...
# Basis in the cyclotomic field 1; z3; z3^2 z3^3
1 zeta3 -zeta3 - 1 1