Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Views: 120
Image: ubuntu2004-eol
# Multiplicative Characters of a finite field Fp: # c:Fp*->C*, c(ab)=c*(a)c(b) # # prime number p=7 G=DirichletGroup(7); G # Finite field Fp G.gen(0).base_ring() # R is a cyclotomic field; see SAGE number fields
Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2 Cyclotomic Field of order 6 and degree 2
# ... this is Q(z6), and the degree of the extension [Q(z6):Q] is 2 (never mind this ... for now)
n=len(G); n # the LENGTH of the list is the number of characters: same as |Fp*|=p-1 for k in range(n): print(G[k])
6 Dirichlet character modulo 7 of conductor 1 mapping 3 |--> 1 Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6 Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6 - 1 Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -1 Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -zeta6 Dirichlet character modulo 7 of conductor 7 mapping 3 |--> -zeta6 + 1
# Write by hand the correspondence, compute some values and represent graphically ... #
# ************************************************************************* # Generators of the group of Dirichlet characters # ************************************************************************* x=G.gens(); x # independent generators: ONE per dimension!! d=len(x); d # number of independent generators for k in range(d): x[k]
(Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6,) 1 Dirichlet character modulo 7 of conductor 7 mapping 3 |--> zeta6