Proof
Suppose that
\begin{equation*}
g( \omega^r) = g(\omega^{r + 1}) = \cdots = g( \omega^{r + s - 1}) = 0.
\end{equation*}
Let $f(x)$ be some polynomial in $C$ with $s$ or fewer nonzero coefficients. We can assume that
\begin{equation*}
f(x) = a_{i_0} x^{i_0} + a_{i_1} x^{i_1} + \cdots + a_{i_{s - 1}} x^{i_{s - 1}}
\end{equation*}
be some polynomial in $C\text{.}$ It will suffice to show that all of the $a_i$'s must be 0. Since
\begin{equation*}
g( \omega^r) = g(\omega^{r + 1}) = \cdots = g( \omega^{r + s - 1}) = 0
\end{equation*}
and $g(x)$ divides $f(x)\text{,}$
\begin{equation*}
f( \omega^r) = f(\omega^{r + 1}) = \cdots = f( \omega^{r + s - 1}) = 0.
\end{equation*}
Equivalently, we have the following system of equations:
\begin{align*}
a_{i_0} (\omega^r)^{i_0} + a_{i_1} (\omega^r)^{i_1} + \cdots + a_{i_{s - 1}} (\omega^r)^{i_{s - 1}} & = 0\\
a_{i_0} (\omega^{r + 1})^{i_0} + a_{i_1} (\omega^{r + 1})^{i_2} + \cdots + a_{i_{s-1}} (\omega^{r+1})^{i_{s-1}} & = 0\\
& \vdots \\
a_{i_0} (\omega^{r + s - 1})^{i_0} + a_{i_1} (\omega^{r + s - 1})^{i_1} + \cdots + a_{i_{s - 1}} (\omega^{r + s - 1})^{i_{s - 1}} & = 0.
\end{align*}
Therefore, $(a_{i_0}, a_{i_1}, \ldots, a_{i_{s - 1}})$ is a solution to the homogeneous system of linear equations
\begin{align*}
(\omega^{i_0})^r x_0 + (\omega^{i_1})^r x_1 + \cdots + (\omega^{i_{s - 1}})^r x_{n - 1} & = 0\\
(\omega^{i_0})^{r + 1} x_0 + (\omega^{i_1})^{r + 1} x_1 + \cdots + (\omega^{i_{s - 1}})^{r + 1} x_{n - 1} & = 0\\
& \vdots \\
(\omega^{i_0})^{r + s - 1} x_0 + (\omega^{i_1})^{r + s - 1} x_1 + \cdots + (\omega^{i_{s - 1}})^{r + s - 1} x_{n - 1} & = 0.
\end{align*}
However, this system has a unique solution, since the determinant of the matrix
\begin{equation*}
\begin{pmatrix}
(\omega^{i_0})^r & (\omega^{i_1})^r & \cdots & (\omega^{i_{s-1}})^r \\
(\omega^{i_0})^{r+1} & (\omega^{i_1})^{r+1} & \cdots &
(\omega^{i_{s-1}})^{r+1} \\
\vdots & \vdots & \ddots & \vdots \\
(\omega^{i_0})^{r+s-1} & (\omega^{i_1})^{r+s-1} & \cdots &
(\omega^{i_{s-1}})^{r+s-1}
\end{pmatrix}
\end{equation*}
can be shown to be nonzero using Lemma 22.20 and the basic properties of determinants (Exercise). Therefore, this solution must be $a_{i_0} = a_{i_1} = \cdots = a_{i_{s - 1}} = 0\text{.}$